
Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 1

runlinc Project 14 AI5:

AI Object Recognition Library (E32W Version)

Contents
Introduction .. 1

Part A: The Plan and Circuit on runlinc ... 2

Part B: Preparation .. 2

Part C: Program the Circuit ... 3

Part D: Run the Application .. 4

Appendix A: Fail to finish loading .. 5

Introduction

Aim

This project will introduce you with how to implement image recognition on runlinc. A

demonstration of the project can be watched on the following link:

https://www.youtube.com/watch?v=1oR-HeUsfUQ

Background

Object recognition is one of the amazing applications of Image recognition applied to

camera/video. By real-time recording a video, we can recognise if an object in a camera is

human or otherwise. This can help immensely for security reasons. Imagine the possibilities

of the world with this technology. However, in this project, rather than coding object

recognition from scratch, we will introduce you to the library that has already been made by

others that we can use for object recognition.

The Library: MobileNets: small, low-latency, low-power models parameterised to meet the

resource constraints of a variety of implementation cases. They can be built upon for

classification, detection, embeddings and segmentation similar to how other popular large-

scale models, such as Inception, are used. MobileNets trades off between latency, size and

accuracy while comparing favourably with popular models from the literature.

https://www.youtube.com/watch?v=1oR-HeUsfUQ

Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 2

runlinc Project 14 AI5: AI Recognition Object Library (E32W Version)

This TensorFlow model does not require you to know about machine learning. It can take as

input any browser-based image elements (, <video>, <canvas> elements, for

example) and returns an array of most likely predictions and their confidences.

runlinc Background

runlinc is a web page inside a Wi-Fi chip. The programming is done inside the browsers

compare to programming inside a chip. The runlinc web page inside the Wi-Fi chip will

command the microchips to do sensing, control, data logging Internet of Things (IoT). It can

predict and command.

Part A: The Plan and Circuit on runlinc

Note: refer to runlinc Wi-Fi setup guide document to connect to runlinc.

For this project, we won’t be using any input or output (I/O).

However, the webpage will use your computer’s connected camera. For example, if

you used a laptop, it will use your laptop’s inbuilt camera. If you use a desktop, it will

connect to the connected camera or if not connected, will not show anything.

Also, if the recognition is above 0.5 ratios, it will produce speech audio of the result.

Figure 1 runlinc I/O on the host computer

Part B: Preparation

You will need to set up a pagekite connection. Please go to the pagekite setup document to

learn more about setting up a pagekite connection.

Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 3

runlinc Project 14 AI5: AI Recognition Object Library (E32W Version)

Part C: Program the Circuit

We’ll add some style to the website with the following CSS:

Enter the following HTML:

Enter the following JavaScript:

var classifier; var video; var resultsP; var msg1; var prevmsg;
function preload(){
 classifier = ml5.imageClassifier('MobileNet');
}
function setup() {
 video = createCapture(VIDEO);
 video.size(640,480);
 modelReady();
 resultsP = createP('Loading model and video...');
}
function modelReady() {
 console.log('Model Ready');
 classifyVideo();
 }
 function classifyVideo() {
 classifier.classifyStart(video, gotResult);
}
async function gotResult (results) {
resultsP.html(results[0].label + ' ' + nf(results[0].confidence,
0, 2));
 if(nf(results[0].confidence, 0, 2) > 0.35){
 if(results[0].label != prevmsg){ msg1 = new
SpeechSynthesisUtterance(results[0].label);
window.speechSynthesis.speak(msg1);
 prevmsg = results[0].label;
 }
}
setTimeout(classifyVideo, 5000); }

<head>
 <meta charset="UTF-8">
<title>Webcam Object Classification</title>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.9.1/p5.min.js"></script>
<script src="https://unpkg.com/ml5@latest/dist/ml5.min.js" type="text/javascript"></script>
 </head>
<body>
 <h1>Webcam Object Classification</h1>
</body>

h1 {
font-size: 40px;
font-family: "Lucida Sans Unicode", "Lucida Grande", sans-serif;

}
p {
font-size: 20px;
font-family: Arial, Helvetica, sans-serif;

}

Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 4

runlinc Project 14 AI5: AI Recognition Object Library (E32W Version)

Expected runlinc control page:

Figure 2 Expected runlinc control page.

Part D: Run the Application

When you finish implementing the code to the

STEMSEL board, remember to send the code

to the board. You then SHOULD connect to

the webpage using your pagekite link using

https prefix (i.e. https://***.pagekite.me

where *** is your pagekite). Once the page is

connected, you should have the following page

in Figure 3.

Then you can play around object recognition

with many kinds of stuff!
Figure 3 Expected website result.

Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 5

runlinc Project 14 AI5: AI Recognition Object Library (E32W Version)

Appendix A: Fail to finish loading

Some of you might find that the code will not work as the page is stuck on loading sign.

Then it is the most likely problem that you are using the latest browser with a security patch.

Your runlinc is running on http connection whereas the library is using an https connection.

Latest browser security patch does not allow the http and https resources to mix.

Therefore, the JavaScript part needs to be modified for the project to work, and this

modification works only on Firefox (as of now).

The new JavaScript will become:

var classifier; var video; var resultsP; var msg1; var prevmsg;
function preload(){
 classifier = ml5.imageClassifier('MobileNet');
}
function setup() {
 video = createCapture(VIDEO);
 video.size(640,480);
 modelReady();
 resultsP = createP('Loading model and video...');
}
function modelReady() {
 console.log('Model Ready');
 classifyVideo();
 }
 function classifyVideo() {
 classifier.classifyStart(video, gotResult);
}
async function gotResult (results) {
resultsP.html(results[0].label + ' ' + nf(results[0].confidence,
0, 2));
 if(nf(results[0].confidence, 0, 2) > 0.35){
 if(results[0].label != prevmsg){ msg1 = new
SpeechSynthesisUtterance(results[0].label);
window.speechSynthesis.speak(msg1);
 prevmsg = results[0].label;
 }
}
setTimeout(classifyVideo, 5000); }

function mSec(delay){
return (
new Promise(

(resolve) => setTimeout(
() => resolve(true),
delay

)
)

);
};

